0

Full Content is available to subscribers

Subscribe/Learn More  >

Investigation of High-Speed Nanogrinding Mechanism Based on Molecular Dynamics

[+] Author Affiliations
Yao Liu, Beizhi Li

Donghua University, Shanghai, China

Yihao Zheng

University of Michigan, Ann Arbor, MI

Paper No. MSEC2018-6416, pp. V004T03A024; 8 pages
doi:10.1115/MSEC2018-6416
From:
  • ASME 2018 13th International Manufacturing Science and Engineering Conference
  • Volume 4: Processes
  • College Station, Texas, USA, June 18–22, 2018
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5138-8
  • Copyright © 2018 by ASME

abstract

The SiC ceramic ductile grinding, which can obtain crack-free ground surface, is a challenge in brittle material machining. To understand the brittle material ductile grinding mechanism in the nanoscale, a molecular dynamics (MD) model is built to study the single diamond grit grinding silicon carbide ceramic. Through analyzing the MD simulation process, the grit forces the SiC to deform and form the chip through the plastic deformation and flow. The ground surface has no crack on the surface and damage layer thickness is less than one atom layer under the nanoscale depth of cut, which indicates the nanogrinding can achieve the pure ductile grinding for the SiC ceramic and obtain a crack-free and high-quality ground surface. Grinding force, stress, temperature, and specific energy increase with the wheel speed and depth of cut due to the higher grinding speed and a smaller depth of cut can generate a higher density of defects (vacancies, interstitial atoms, and dislocations) on the workpiece, which can make the silicon carbide ceramic more ductile. The high wheel speed is favorable for the ductile grinding.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In