Full Content is available to subscribers

Subscribe/Learn More  >

A Study on Micro-Milling of Aluminium 6061 and Copper With Respect to Cutting Forces, Surface Roughness and Burr Formation

[+] Author Affiliations
A. Sravan Kumar, Sankha Deb, S. Paul

Indian Institute of Technology Kharagpur, Kharagpur, India

Paper No. MSEC2018-6570, pp. V004T03A014; 7 pages
  • ASME 2018 13th International Manufacturing Science and Engineering Conference
  • Volume 4: Processes
  • College Station, Texas, USA, June 18–22, 2018
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5138-8
  • Copyright © 2018 by ASME


In the present study, micro-milling of aluminium 6061 alloy and copper was undertaken. TiAlN coated two-flute flat end milling cutters of 0.5 mm diameter were used for conducting micro-channel milling experiments with minimum quantity lubrication (MQL) as the cutting environment. The effect of process parameters namely cutting velocity (vc) and feed per flute (fz) on the cutting forces, surface roughness and burr width are reported. RMS values of longitudinal feed force (FX), transverse cutting force (FY) and vertical thrust force (FZ) were measured and the maximum values for Al 6061 are 0.33 N, 0.16 N and 0.21 N respectively, and the same for copper are measured to be 0.11 N, 0.17 N and 0.22 N respectively. Average surface roughness along the milling direction (Ra) at the bottom surface of the micro-channel was measured. Smoother surfaces were generated at lower feed per flute in both the materials. Ra is found to be varying from 28.2 nm to 86.9 nm for Al 6061, and for copper, the range is from 4.9 nm to 32.7 nm. SEM images of the micro-channels were analysed and top burr width was measured in both up-milling and down-milling directions. Higher feed per flute produced smaller burrs in both up-milling and down-milling directions. Maximum burr width for Al 6061 is measured to be 12.86 μm and 15.28 μm in up-milling and down-milling direction respectively, and for copper, the same are measured to be 12.84 μm and 20.46 μm respectively.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In