Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Study of Machining of Smart Materials Using Submerged Abrasive Waterjet Micromachining Process

[+] Author Affiliations
Sagil James, Anurag Mahajan

California State University Fullerton, Fullerton, CA

Paper No. MSEC2018-6494, pp. V004T03A012; 8 pages
  • ASME 2018 13th International Manufacturing Science and Engineering Conference
  • Volume 4: Processes
  • College Station, Texas, USA, June 18–22, 2018
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5138-8
  • Copyright © 2018 by ASME


Smart materials are new generation materials which possess great properties to mend themselves with a change in environment. Smart materials find applications in a wide range of industries including biomedical, aerospace, defense and energy sector and so on. These materials possess unique properties including high hardness, high strength, high melting point and low creep behavior. Manufacturing of these materials is a huge challenge, particularly at the micron scale. Abrasive waterjet micromachining (AWJMM) is a non-traditional material removal process which has the capability of machining extremely hard and brittle materials such as glasses and ceramics. AWJMM process is usually performed with nozzle and workpiece placed in air. However, machining in the air causes spreading of the waterjet resulting in low machining quality. Performing the AWJMM process with a submerged nozzle and workpiece could eliminate this problem and also reduce noise, splash, and airborne debris particles during the machining process. This research investigates Submerged Abrasive Waterjet Machining (SAWJMM) process for micromachining smart ceramic materials. The research involves experimental study on micromachining of smart materials using an in-house fabricated SAWJMM setup. The effect of critical parameters including stand-off distance, abrasive grain size and material properties on the cavity size, kerf angle and MRR during SAWJMM and AWJMM processes are studied. The study found that SAWJMM process is capable of successfully machining smart materials including shape memory alloys and piezoelectric materials at the micron scale. The machined surfaced are free of thermal stresses and did not show any cracking around the edges. The critical process parameter study revealed that stand-off distance and abrasive grit size significantly affect the machining results.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In