Full Content is available to subscribers

Subscribe/Learn More  >

Influence of Heat Input on Mechanical Properties and Microstructure of Laser Welded Dissimilar Galvanized Steel-Aluminum Joints

[+] Author Affiliations
Celalettin Yuce, Fatih Karpat, Nurettin Yavuz

Uludag University, Bursa, Turkey

Paper No. MSEC2018-6419, pp. V002T04A037; 9 pages
  • ASME 2018 13th International Manufacturing Science and Engineering Conference
  • Volume 2: Materials; Joint MSEC-NAMRC-Manufacturing USA
  • College Station, Texas, USA, June 18–22, 2018
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5136-4
  • Copyright © 2018 by ASME


The hybrid structures of aluminum-steel have been increasingly used for body-in-white constructions in order to reduce weight and green gas emissions. Obtaining acceptable joints between steel and aluminum required a better understanding of welding metallurgy and their effects on the resultant mechanical properties as well as the microstructure of the joints. In this research, the fiber laser welding of zero-gap galvanized steel and aluminum alloy in an overlapped configuration was carried out. The influence of heat input on the weld bead dimension, microstructural and mechanical properties of the joints was studied. A detailed study was conducted on the effects of the heat input on the penetration depth, weld width and microstructure of the laser welded dissimilar joints by means of an optical microscopy. A scanning electron microscopy with energy dispersive spectroscopy was carried out to determine the atomic percent of the elements for intermetallic compounds (IMC) occurred at the interface of the aluminum and steel. Microhardness measurement and tensile shear tests were conducted to evaluate the mechanical properties of the galvanized steel to aluminum lap joints. The experimental results showed that the penetration depth and weld width increased with the increase of heat input level. However, in order to limit IMC layer thickness and hardness at the surface of the weld seam and aluminum alloy, iron to aluminum dilution should be restricted by limiting the penetration depth. At lower heat input levels, less brittle IMC formation was formed. Consequently, with limited penetration depths at low heat input levels, up to 520 N tensile shear load achieved, with failures located in the interface of the joints.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In