0

Full Content is available to subscribers

Subscribe/Learn More  >

Viscous Shear Banding in Cutting of Metals

[+] Author Affiliations
Dinakar Sagapuram

Texas A&M University, College Station, TX

Koushik Viswanathan

Purdue University, West Lafayette, IN

Paper No. MSEC2018-6697, pp. V002T04A032; 9 pages
doi:10.1115/MSEC2018-6697
From:
  • ASME 2018 13th International Manufacturing Science and Engineering Conference
  • Volume 2: Materials; Joint MSEC-NAMRC-Manufacturing USA
  • College Station, Texas, USA, June 18–22, 2018
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5136-4
  • Copyright © 2018 by ASME

abstract

Shear banding is a type of plastic flow instability with often adverse implications for cutting and deformation processing of metals. Here, we study the mechanics of plastic flow evolution within single shear bands in two different (Ti and Ni-based) alloy systems. The local shear band displacement profiles are quantitatively mapped at high resolution using a special micro-marker technique. The results show that shear bands, once nucleated, evolve by a universal viscous sliding mechanism that is independent of microstructural details. The evolution of local deformation around the band is accurately captured using a simple momentum diffusion model by assuming Bingham flow rheology for the band material. The predicted band viscosity is very small, comparable to those of liquid metals. A plausible explanation for this small viscosity and fluid-like behavior at the band, based on phonon drag, is presented.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In