0

Full Content is available to subscribers

Subscribe/Learn More  >

Supercritical CO2 Pretreatment of Cellulosic Biomass for Biofuel Production: Effects of Biomass Particle Size

[+] Author Affiliations
Yang Yang, Timothy Deines, Meng Zhang, Ke Zhang, Donghai Wang

Kansas State University, Manhattan, KS

Paper No. MSEC2018-6656, pp. V002T04A018; 7 pages
doi:10.1115/MSEC2018-6656
From:
  • ASME 2018 13th International Manufacturing Science and Engineering Conference
  • Volume 2: Materials; Joint MSEC-NAMRC-Manufacturing USA
  • College Station, Texas, USA, June 18–22, 2018
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5136-4
  • Copyright © 2018 by ASME

abstract

Biofuel derived from cellulosic biomass is a sustainable alternative to petroleum-based fuel. Pretreatment is an essential step in biofuel production because it accounts for more than 20% of the inputs. Furthermore, particle size reduction as a preprocessing step prior to pretreatment exerts a substantial impact on all following processes. Many studies have investigated the effects of biomass particle size on sugar yield after conventional pretreatments of biomass such as alkaline and dilute acid pretreatments. The similar trends have shown that smaller biomass particle size results in higher sugar yield. Supercritical CO2 (SC-CO2) pretreatment has been applied at 1450 psi, 120 °C for 30 mins in this study as a pretreatment method for biofuel production from cellulosic biomass. As a recyclable green-chemistry method, SC-CO2 pretreatment offers many advantages such as no toxic chemicals added and low-cost input. The objective of this study is to understand the effects of particle size on sugar yield after SC-CO2 pretreatment. Three particle size: 1 mm, 2 mm, and 4 mm were used for size reduction of corn stover. Ethanol and water were used as co-solvents to enhance SC-CO2 pretreatment. Analysis of variance (ANOVA) was performed and it is found that, after SC-CO2 pretreatment, the sugar yields differ significantly between 1 mm and 2 mm, 1 mm and 4 mm. In contrast, there is no significant difference between 2 mm and 4 mm after SC-CO2 pretreatment. 1 mm particle produced the highest sugar yield of 0.115 g glucose per 1 g of dry biomass which is 16.62% and 10.39% higher than the 4 mm and 2 mm corn stover biomass produced.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In