Full Content is available to subscribers

Subscribe/Learn More  >

Nickel/Alumina Metal Matrix Nanocomposites Obtained by High-Energy Ball Milling and Spark Plasma Sintering

[+] Author Affiliations
Enrique Martínez-Franco, Jesús González Hernández, Juan Manuel Alvarado Orozco

Center for Engineering and Industrial Development, Querétaro, Mexico

Ming Li, Chao Ma

Texas A&M University, College Station, TX

Ricardo Cuenca Álvarez

National Polytechnic Institute-CIITEC, Ciudad de México, Mexico

Paper No. MSEC2018-6610, pp. V002T04A003; 5 pages
  • ASME 2018 13th International Manufacturing Science and Engineering Conference
  • Volume 2: Materials; Joint MSEC-NAMRC-Manufacturing USA
  • College Station, Texas, USA, June 18–22, 2018
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5136-4
  • Copyright © 2018 by ASME


Metal matrix nanocomposites (MMNCs) are anticipated to offer significantly better performance than existing superalloys. Nickel/alumina nanocomposite samples were fabricated with a powder metallurgy method, combining high-energy ball milling (HEBM) and spark plasma sintering (SPS). The objective of this research is to determine the effect of alumina nanoparticle fraction and HEBM parameters on the powder preparation and sintering processes, and resultant microstructure and properties. Nickel-based powders containing various fractions (1, 5 and 15 vol.%) alumina nanoparticles were prepared by HEBM. The initial particle sizes were 44 μm and 50 nm for nickel and alumina, respectively. The milling process was conducted by starting with mixing at 250 rpm for 5 min, followed by cycling operation at high and low speeds (1200 rpm for 4 min and 150 rpm for 1 min). Samples at different milling times (30, 60, 90 and 120 min) of each composition were obtained. Scanning electron microscopy (SEM) was used to evaluate the dispersion of nanoparticles in the powders at different milling times. SPS technique was used for consolidation of the prepared powders. SEM images showed that alumina nanoparticles are homogeneously dispersed in the metal matrix in the sample containing 15 vol.% alumina. Hardness measurements in cross sections of SPSed samples showed higher values for Ni/Al2O3 MMNC compared to pure Ni.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In