0

Full Content is available to subscribers

Subscribe/Learn More  >

Improvement of Ionic Bonding Strength and Electrochemical Corrosion Resistance of Hydroxyapatite- Calcium Phosphate Pulsed Electrochemically Deposited In-Situ Coating Through Hydroxyl Ion Treatment

[+] Author Affiliations
Rajib Chakraborty, Susmita Datta, Mohammad Shahid Raza, Partha Saha

Indian Institute of Technology Kharagpur, Kharagpur, India

Paper No. MSEC2018-6582, pp. V001T05A015; 9 pages
doi:10.1115/MSEC2018-6582
From:
  • ASME 2018 13th International Manufacturing Science and Engineering Conference
  • Volume 1: Additive Manufacturing; Bio and Sustainable Manufacturing
  • College Station, Texas, USA, June 18–22, 2018
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5135-7
  • Copyright © 2018 by ASME

abstract

Hydroxyl ion treatment of different hydroxyapatite-calcium hydrogen phosphate composite in-situ coatings synthesized through pulsed electro-deposition with varying amount of hydroxyapatite phase and degree of crystallinity were carried out with the help of highly basic solution in order to achieve a more chemically stable and corrosion resistance performance under contact with body fluid. The coatings exhibit altogether completely different behaviour in terms of bond formation, surface topography generation, phase transformation and corrosion behaviour. Detailed characterizations of formed top surface layer were carried out with the help of XRD, SEM and FTIR in order to correlate the results with their base surface characteristics. Transformation of <020> and <121> surface parallel planes of calcium hydrogen phosphate in to <002> and <112> planes of hydroxyapatite took place in all the coatings along with formation of nano-crystalline structure. Calcium-rich porous hydroxyapatite scaffold formation takes place in low current density coating which in general exhibits low stability in terms of chemical bonding strength vis-à-vis corrosion protection performance. 10 mA/cm2 coating, which come with optimum presence of hydroxyapatite phase and crystallinity post electro-deposition, showed significant improvement in terms of increasing hydroxyl and phosphate bond polarization strength of hydroxyapatite phase and the same lead to improvement in the overall corrosion resistance performance of the coating by two times. Despite of formation of highest amount of hydroxyapatite phase during hydroxyl ion treatment in 20 mA/cm2 coatings, the corrosion protection performance results are negative on account of dilution of mostly low bonding amorphous phases with high internal residual stress.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In