Full Content is available to subscribers

Subscribe/Learn More  >

A Flexible Tactile Sensor Based on Porous Graphene Sponge for Tiny Force Measurement

[+] Author Affiliations
Lingfeng Zhu, Yancheng Wang, Xin Wu, Deqing Mei

Zhejiang University, Hangzhou, China

Paper No. MSEC2018-6366, pp. V001T05A003; 7 pages
  • ASME 2018 13th International Manufacturing Science and Engineering Conference
  • Volume 1: Additive Manufacturing; Bio and Sustainable Manufacturing
  • College Station, Texas, USA, June 18–22, 2018
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5135-7
  • Copyright © 2018 by ASME


Flexible tactile sensors have been utilized for epidermal pressure sensing, motion detecting, and healthcare monitoring in robotic and biomedical applications. This paper develops a novel piezoresistive flexible tactile sensor based on porous graphene sponges. The structural design, working principle, and fabrication method of the tactile sensor are presented. The developed tactile sensor has 3 × 3 sensing units and has a spatial resolution of 3.5 mm. Then, experimental setup and characterization of this tactile sensor are conducted. Results indicated that the developed flexible tactile sensor has good linearity and features two sensitivities of 2.08 V/N and 0.68 V/N. The high sensitivity can be used for tiny force detection. Human body wearing experiments demonstrated that this sensor can be used for distributed force sensing when the hand stretches and clenches. Thus the developed tactile sensor may have great potential in the applications of intelligent robotics and healthcare monitoring.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In