0

Full Content is available to subscribers

Subscribe/Learn More  >

A Combined Experimental-Numerical Method to Evaluate Powder Thermal Properties in Laser Powder Bed Fusion

[+] Author Affiliations
Bo Cheng, Kevin Chou

University of Louisville, Louisville, KY

Brandon Lane, Justin Whiting

National Institute of Standards and Technology, Gaithersburg, MD

Paper No. MSEC2018-6664, pp. V001T01A030; 10 pages
doi:10.1115/MSEC2018-6664
From:
  • ASME 2018 13th International Manufacturing Science and Engineering Conference
  • Volume 1: Additive Manufacturing; Bio and Sustainable Manufacturing
  • College Station, Texas, USA, June 18–22, 2018
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5135-7
  • Copyright © 2018 by ASME

abstract

Powder bed metal additive manufacturing (AM) utilizes a high-energy heat source scanning at the surface of a powder layer in a pre-defined area to be melted and solidified to fabricate parts layer by layer. It is known that powder bed metal AM is primarily a thermal process and further, heat conduction is the dominant heat transfer mode in the process. Hence, understanding the powder bed thermal conductivity is crucial to process temperature predictions, because powder thermal conductivity could be substantially different from its solid counterpart. On the other hand, measuring the powder thermal conductivity is a challenging task. The objective of this study is to investigate the powder thermal conductivity using a method that combines a thermal diffusivity measurement technique and a numerical heat transfer model. In the experimental aspect, disk-shaped samples, with powder inside, made by a laser powder bed fusion (LPBF) system, are measured using a laser flash system to obtain the thermal diffusivity and the normalized temperature history during testing. In parallel, a finite element model is developed to simulate the transient heat transfer of the laser flash process. The numerical model was first validated using reference material testing. Then, the model is extended to incorporate powder enclosed in an LPBF sample with thermal properties to be determined using an inverse method to approximate the simulation results to the thermal data from the experiments. In order to include the powder particles’ contribution in the measurement, an improved model geometry, which improves the contact condition between powder particles and the sample solid shell, has been tested. A multi-point optimization inverse heat transfer method is used to calculate the powder thermal conductivity. From this study, the thermal conductivity of a nickel alloy 625 powder in powder bed conditions is estimated to be 1.01 W/m·K at 500 °C.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In