0

Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Design and Testing of a Passive Helmet Heat Exchanger With Additively Manufactured Components

[+] Author Affiliations
Kailyn Cage, Monifa Vaughn-Cooke, Mark Fuge

University of Maryland, College Park, MD

Briana Lucero, Dusan Spernjak, John Bernardin

Los Alamos National Laboratory, Los Alamos, NM

Paper No. MSEC2018-6406, pp. V001T01A004; 10 pages
doi:10.1115/MSEC2018-6406
From:
  • ASME 2018 13th International Manufacturing Science and Engineering Conference
  • Volume 1: Additive Manufacturing; Bio and Sustainable Manufacturing
  • College Station, Texas, USA, June 18–22, 2018
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5135-7
  • Copyright © 2018 by ASME

abstract

Additive manufacturing (AM) processes allow for complex geometries to be developed in a cost- and time-efficient manner in small-scale productions. The unique functionality of AM offers an ideal collaboration between specific applications of human variability and thermal management. This research investigates the intersection of AM, human variability and thermal management in the development of a military helmet heat exchanger. A primary aim of this research was to establish the effectiveness of AM components in thermal applications based on material composition. Using additively manufactured heat pipe holders, the thermal properties of a passive evaporative cooler are tested for performance capability with various heat pipes over two environmental conditions.

This study conducted a proof-of-concept design for a passive helmet heat exchanger, incorporating AM components as both the heat pipe holders and the cushioning material targeting internal head temperatures of ≤ 35°C. Copper heat pipes from 3 manufactures with three lengths were analytically simulated and experimentally tested for their effectiveness in the helmet design. A total of 12 heat pipes were tested with 2 heat pipes per holder in a lateral configuration inside a thermal environmental chamber. Two 25-hour tests in an environmental chamber were conducted evaluating temperature (25°C, 45°C) and relative humidity (25%, 50%) for the six types of heat pipes and compared against the analytical models of the helmet heat exchangers.

Many of the heat pipes tested were good conduits for moving the heat from the head to the evaporative wicking material. All heat pipes had Coefficients of Performance under 3.5 when tested with the lateral system. Comparisons of the analytical and experimental models show the need for the design to incorporate a re-wetting reservoir. This work on a 2-dimensional system establishes the basis for design improvements and integration of the heat pipes and additively manufactured parts with a 3-dimensional helmet.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In