0

Full Content is available to subscribers

Subscribe/Learn More  >

Parametric Model of Dead Leg Steady-State Thermal Performance

[+] Author Affiliations
Arnaud Sanchis, Sonny Andersson

TechnipFMC, Oslo, Norway

Atle Jensen

University of Oslo, Oslo, Norway

Paper No. OMAE2018-78407, pp. V005T04A036; 7 pages
doi:10.1115/OMAE2018-78407
From:
  • ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 5: Pipelines, Risers, and Subsea Systems
  • Madrid, Spain, June 17–22, 2018
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5124-1
  • Copyright © 2018 by ASME

abstract

During thermal design of Subsea Production Systems (SPS), Computational Fluid Dynamics (CFD) is used to calculate production fluid temperatures in dead legs of the system. One purpose of such simulations could be to calculate the amount of insulation needed to avoid low temperatures in the piping system. A novel approach to this type of analysis is presented here to build a parametric model able to map the dead leg performance against any set of input parameters. The workflow relies on a response surface analysis performed from the results of a limited set of CFD simulations run on a sparse simulation matrix that covers the design space. Once generated, the parametric model provides real-time results and may be used for screening, optimization or condition monitoring purposes.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In