0

Full Content is available to subscribers

Subscribe/Learn More  >

Dominant Factors Influencing Ductile Fracture on Cutting Surface During Cold Forming

[+] Author Affiliations
Kazunari Takahashi, Shuichi Yamatoki

Namura Shipbuilding Co., Ltd., Imari, Japan

Tetsuya Namegawa, Masaaki Fujioka

Nippon Steel & Sumitomo Metal, Futtsu, Japan

Masahiko Kinoshita

Nippon Steel & Sumitomo Metal, Oita, Japan

Paper No. OMAE2018-77177, pp. V004T03A026; 9 pages
doi:10.1115/OMAE2018-77177
From:
  • ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 4: Materials Technology
  • Madrid, Spain, June 17–22, 2018
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5123-4
  • Copyright © 2018 by ASME

abstract

Cracks caused by cold bending during shipyard construction were found to be longer in mild steel than in high tensile steel. Because mild steel has better elongation, the cause of such cracking was difficult to ascertain. Bending tests of large number of steel pieces to confirm the effects of multiple parameters, nonlinear finite-element analysis to check strain distribution, and fractography to determine the nature of the fracture indicated that ductile fracture initiated where the strain value was highest, as is generally expected. In the bending tests, the fractures were reproducibly longer in alloys with better ductility. One of the reasons for this phenomenon was that the surface was more hardened by plasma-arc cutting in mild steel because of its high carbon content according to hardness tests on the cutting surfaces. We therefore proposed a new equation to estimate crack length, taking into account three factors: strain, elongation and surface hardness. We showed that the relationship between crack length and the values by the equation explains the results of the bending tests. Additionally, we suggested the possibility that inclusions within an alloy affect the crack length. Cold forming is a general procedure used in shipyards. If inspections fail to find a crack, it may propagate to fatal damage after delivery. This study is therefore useful in preventing the initiation of cracks.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In