0

Full Content is available to subscribers

Subscribe/Learn More  >

Fatigue Strength Assessment of a Structure Considering Corrosion Wastage and Corrosion Fatigue

[+] Author Affiliations
Norio Yamamoto, Tomohiro Sugimoto, Kinya Ishibashi

Nippon Kaiji Kyokai (ClassNK), Tokyo, Japan

Paper No. OMAE2018-78188, pp. V003T02A031; 8 pages
doi:10.1115/OMAE2018-78188
From:
  • ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 3: Structures, Safety, and Reliability
  • Madrid, Spain, June 17–22, 2018
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5122-7
  • Copyright © 2018 by ASME

abstract

It is known that the fatigue strength decreases in corrosive environment and many experiments were carried out to comprehend the decrease in fatigue strength in corrosive environment. In order to comprehend the actual state, a cycle speed of fatigue test loads should correspond to a wave frequency. Therefore, an experiment in the long life region is practically difficult, then the corrosion fatigue data available for the life assessment of the structure is quite limited.

In this study, the fatigue strength of the welded joints in long life service was evaluated according to the calculations of corrosion fatigue crack propagation subjected to the random loadings which followed an exponential distribution. In the crack propagation calculations, the progress of corrosion wastage from the plate surface and the resultant stress increase were considered simultaneously. In the high stress and the short life region, the decrease in fatigue strength due to the accelerated crack propagation in corrosive environment was dominant because the progress of corrosion wastage was little. On the other hand, in the low stress and the long life region, the decrease in fatigue strength became dull as longer the fatigue life because the corrosion fatigue crack propagation was suppressed by the corrosion wastage, but after that the fatigue strength showed the precipitous decrease due to the increase in stress resulted by the progress of corrosion wastage.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In