Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation of Surface Ship Motion in Regular Head Waves

[+] Author Affiliations
Lixiang Guo, Peng Wei, Zhiguo Zhang, Yue Sun, Jiawei Yu

Huazhong University of Science and Technology, Wuhan, China

Paper No. OMAE2018-77327, pp. V002T08A039; 7 pages
  • ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 2: CFD and FSI
  • Madrid, Spain, June 17–22, 2018
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5121-0
  • Copyright © 2018 by ASME


The motion of surface ship in wave environments is fully three-dimensional unsteady motion and includes complex coupling with hydrodynamic force and dynamic motion of the rigid body. This paper presents simulations of the KCS model with motions involve pitch and heave in regular head waves. Computations were performed with an in-house viscous CFD code to solve RANS equation coupled with six degrees of freedom (6DOF) solid body motion equations and dynamic overset grids designed for ship hydrodynamics. RANS equations are solved by finite difference method and PISO arithmetic. Level-set method is used to simulate the free surface flow. The simulation geometry includes KCS hull and rudder under three conditions with three wave length and wave height combinations and two velocities (Fr = 0.26 and 0.33). Total resistance coefficient CT, heave motion z and pitch angle θ have been compared between CFD and EFD. Comparisons show that pitch and heave are much better predicted than the resistance. In the first section, simulations considered only 2 degrees of freedom (heave and pitch), for the second section, numerical simulation added the rolling motion to study the KCS in regular head waves. The second simulation cases were carried out with the same velocity and wave length and amplitude combination as the first cases. Comparisons of heave and pitch motion between 2DOF simulations and 3DOF simulations were presented in this paper. Results show the difference of heave motion z and pitch angle θ between the 2DOF and 3DOF-simulasions. In both cases the free surface were studied as an example of the flow generated by the ship pitching and heaving.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In