Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Study on the Migration of Two Spheres in Upward Pipe Flow

[+] Author Affiliations
Lei Liu, Haining Lu, Jianmin Yang, Xinliang Tian, Tao Peng, Jun Li

Shanghai Jiao Tong University, Shanghai, China

Paper No. OMAE2018-77393, pp. V002T08A030; 10 pages
  • ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 2: CFD and FSI
  • Madrid, Spain, June 17–22, 2018
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5121-0
  • Copyright © 2018 by ASME


Migration of particles in pipe flow is commonly seen in offshore engineering, such as vertical transport of ores in deep sea mining. As the basis of the investigation on fluid-particle two-phase flow, the interaction of two spheres in upward pipe flow is studied by direct numerical simulations in this paper. The pipe flow is set as Poiseuille flow; the Reynolds number is no more than 1250. The dynamic responses of the spheres and the flow pattern are analyzed at different flow velocity. When compared to the sedimentation of two spheres in quiescent flow, the trailing sphere in Poiseuille flow will never surpass the leading one in Poiseuille flow. As the flow velocity increases in the pipe, the spheres are easier to separate after collision. When the flow velocity exceeds a critical value, the spheres will never collide.

Copyright © 2018 by ASME
Topics: Pipe flow



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In