0

Experimental Validation of a Wide-Range Centrifugal Compressor Stage for Supercritical CO2 Power Cycles PUBLIC ACCESS

[+] Author Affiliations
Timothy C. Allison, Natalie R. Smith, Jason C. Wilkes

Southwest Research Institute, San Antonio, TX

Robert Pelton, Sewoong Jung

Hanwha Power Systems, Houston, TX

Paper No. GT2018-77026, pp. V009T38A023; 11 pages
doi:10.1115/GT2018-77026
From:
  • ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
  • Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy
  • Oslo, Norway, June 11–15, 2018
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5118-0
  • Copyright © 2018 by ASME

abstract

Successful implementation of sCO2 power cycles requires high compressor efficiency at both the design-point and over a wide operating range in order to maximize cycle power output and maintain stable operation over a wide range of transient and part-load operating conditions. This requirement is particularly true for air-cooled cycles where compressor inlet density is a strong function of inlet temperature that is subject to daily and seasonal variations as well as transient events. In order to meet these requirements, a novel centrifugal compressor stage design was developed that incorporates multiple novel range extension features, including a passive recirculating casing treatment and semi-open impeller design. This design, presented and analyzed for CO2 operation in a previous paper, was fabricated via direct metal laser sintering and tested in an open-loop test rig in order to validate simulation results and the effectiveness of the casing treatment configuration. Predicted performance curves in air and CO2 conditions are compared, resulting in a reduced diffuser width requirement for the air test in order to match design velocities and demonstrate the casing treatment.

Test results show that the casing treatment performance generally matched CFD predictions, demonstrating an operating range of 69% and efficiency above air predictions across the entire map. The casing treatment configuration demonstrated improvements over the solid wall configuration in stage performance and flow characteristics at low flows, resulting in an effective 14% increase in operating range with a 0.5-point efficiency penalty. The test results are also compared to a traditional fully shrouded impeller with the same flow coefficient and similar head coefficient, showing a 42% range improvement over traditional designs.

Copyright © 2018 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In