0

Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Analysis and Pressure Loss Modeling for an Optimized Heat Exchanger Used in a Recuperated CO2 Power Cycle

[+] Author Affiliations
Husam Zawati, Michael Elmore, Jayanta Kapat, Narasimha Nagaiah

University of Central Florida, Orlando, FL

Paper No. GT2018-76975, pp. V009T38A021; 11 pages
doi:10.1115/GT2018-76975
From:
  • ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
  • Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy
  • Oslo, Norway, June 11–15, 2018
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5118-0
  • Copyright © 2018 by ASME

abstract

A simple recuperated cycle is studied and optimized in this paper. Geometrical parameters for a novel recuperator design are then optimized to minimize area density. The recuperator is where the s-CO2 is analyzed and simulated for both hot and cold sides. The design of the cycle is obtained through a study of a 100 MW net power output s-CO2 cycle, where this cycle features a turbine inlet temperature of 1023 K. The main objective of this paper is to couple a recuperated cycle with a heat exchanger. This is done through Pareto optimality to study the tradeoffs between conflicting variables. The geometry of the heat exchanger features two inlet headers attached to semirectangular channels. The thermal analysis used is based on one-dimensional finite enthalpy method, where discretization is made by equal heat transferred per element. In addition, pressure drops are calculated at both sides of main heat exchanger body. Optimized cycle based on practical parametric assumptions reveals an efficiency of 45.8% and specific power of 132.1 kJ/kg. Best design reveals channel side length of 7 mm with surrounding solid sidewall thickness of 1 mm. Pressure drops for the proposed design are 4.8% and 0.6% of the initial pressure for the hot and the cold sides, respectively. Overall length of the heat exchanger is found to be 10.7 m with an effectiveness of 96.2% and an area density of 363 m2/m3.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In