0

Full Content is available to subscribers

Subscribe/Learn More  >

Design of an Air-Cooled Radial Turbine: Part 2 — Experimental Measurements of Heat Transfer

[+] Author Affiliations
Yang Zhang, Tomasz Duda, James A. Scobie, Carl M. Sangan, Colin D. Copeland

University of Bath, Bath, UK

Alex Redwood

HiETA Technologies, Ltd., Bristol, UK

Paper No. GT2018-76384, pp. V008T26A014; 12 pages
doi:10.1115/GT2018-76384
From:
  • ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
  • Volume 8: Microturbines, Turbochargers, and Small Turbomachines; Steam Turbines
  • Oslo, Norway, June 11–15, 2018
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5117-3
  • Copyright © 2018 by ASME

abstract

The paper focuses on manufacture and testing of an additively manufactured, cooled radial turbine. To the authors knowledge, this is the first published work that provides experimental temperature data for a small, internally cooled radial wheel constructed using Selective Laser Melting. This work is highly relevant observing the close correlation between turbine inlet temperature and system efficiency.

An internally cooled radial turbine was tested on the hot gas turbocharger rig at the University of Bath and compared with a baseline uncooled rotor. Thermal history paint was applied to the turbine rotor surfaces to determine the distribution of maximum exposed metal temperature. Both the uncooled and internally cooled turbine rotors were manufactured using Selective Laser Melting (SLM) technology. The resolution and strength of the printed prototype was tested prior to the high speed and high temperature experiment. The highest temperature at turbine leading edge and overall average thermal loading were compared quantitatively between the baseline uncooled rotor and the cooled rotor with internal secondary air plenums. The coolant was supplied from the compressor to the turbine through the centerline of the rotor shaft. The aerodynamic performance and component efficiency were also measured during the experiments. The test results indicate that the internally cooled turbine has a pronounced temperature drop at the blade leading edge and, indeed, throughout the blade passage. This increases the potential for increased turbine inlet temperature in order to achieve improved cycle efficiency. This experimental work has established a foundation for radial turbine internal cooling technology in the turbocharger and micro gas turbine industry.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In