0

Full Content is available to subscribers

Subscribe/Learn More  >

Aerodynamic Design of a Ported Shroud Casing Treatment for a Turbocharger Compressor of a Miller-Cycle Gasoline Engine

[+] Author Affiliations
Christoph Schäfer, Mathias Bogner, Jan Ehrhard, Matthias Dunzer

Continental Automotive GmbH, Regensburg, Germany

Paper No. GT2018-75033, pp. V008T26A001; 14 pages
doi:10.1115/GT2018-75033
From:
  • ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
  • Volume 8: Microturbines, Turbochargers, and Small Turbomachines; Steam Turbines
  • Oslo, Norway, June 11–15, 2018
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5117-3
  • Copyright © 2018 by ASME

abstract

The emission laws for internal combustion engines become more and more strict. Therefore, new concepts have to be implemented. In the so called Miller approach the intake valve is closed before the intake stroke is finished, thus resulting in a lower combustion end temperature and pressure. As a negative result, the specific power of the engine is reduced. This disadvantage has to be compensated by an increased boost pressure delivered by a turbocharger compressor. For the turbomachinery this means for low end torque engine operation a compressor operating point at high pressure ratio and low mass flow. Thus an increased risk for surge results.

A cost-effective measure to establish an utilizable compressor map in this regime is a ported shroud casing treatment. Here, a circumferential cavity connects the low channel at the inducer with the compressor housing inflow, allowing fluid to recirculate at low mass flows. Thereby, the gross inducer mass flow is increased, the flow stabilized and hence the surge line improved. In this paper, a ported shroud casing treatment is developed employing CFD. The aim is to improve the surge line as well as the stability of the compressor characteristics and to minimize the impact on compressor efficiencies at high flows as well as the acoustic behaviour at the same time. In order to validate the performance of the design, standard hot gas measurements as well as acoustic measurements are conducted and analyzed.

Furthermore, the impact of a commonly applied 90° inflow bend on the performance of the ported shroud cavity is investigated by experimental data.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In