Full Content is available to subscribers

Subscribe/Learn More  >

Improving the Flutter Margin of an Unstable Fan Blade

[+] Author Affiliations
Sina Stapelfeldt, Mehdi Vahdati

Imperial College London, London, UK

Paper No. GT2018-76889, pp. V07CT36A021; 11 pages
  • ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
  • Volume 7C: Structures and Dynamics
  • Oslo, Norway, June 11–15, 2018
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5115-9
  • Copyright © 2018 by Rolls-Royce plc


The aim of this paper is to introduce design modifications which can be made to improve the flutter stability of a fan blade. A rig fan blade, which suffered from flutter in the part-speed range and for which good quality measured data in terms of steady flow and flutter boundary is available, is used for this purpose. The work is carried out numerically using the aeroelasticity code AU3D. Two different approaches are explored; aerodynamic modifications and aero-acoustic modifications. In the first approach, the blade is stabilized by altering the radial distribution of the stagger angle based on the steady flow on the blade. The re-staggering patterns used in this work are therefore particular to the fan blade under investigation. Moreover, the modifications made to the blade are very simple and crude and more sophisticated methods and/or an optimization approach could be used to achieve the above objectives with a more viable final design. This paper, however, clearly demonstrates how modifying the steady blade aerodynamics can prevent flutter. In the second approach, flutter is removed by drawing bleed air from the casing above the tip of the blade. Only a small amount of bleed (0.2% of the total inlet flow) is extracted such that the effect on the operating point of the fan is small. The purpose of the bleed is merely to attenuate the pressure wave which propagates from the trailing edge to the leading edge of the blade. The results show that extracting bleed over the tip of the fan blade can improve the flutter margin of the fan significantly.

Copyright © 2018 by Rolls-Royce plc



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In