Full Content is available to subscribers

Subscribe/Learn More  >

Intentional Mistuning With Predominant Aerodynamic Effects

[+] Author Affiliations
Carlos Martel, José J. Sánchez

Universidad Politécnica de Madrid, Madrid, Spain

Paper No. GT2018-75081, pp. V07CT36A005; 11 pages
  • ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
  • Volume 7C: Structures and Dynamics
  • Oslo, Norway, June 11–15, 2018
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5115-9
  • Copyright © 2018 by ASME


Intentional mistuning is a well known procedure to decrease the uncontrolled vibration amplification effects of the inherent random mistuning and to reduce the sensitivity to it. The idea is to introduce an intentional mistuning pattern that is small but much larger that the existing random mistuning. The frequency of adjacent blades is moved apart by the intentional mistuning, reducing the effect of the blade-to-blade coupling and thus the effect of the random mistuning. The situation considered in this work is more complicated because the main source for the blade damping is the effect of the aerodynamic forces (as it happens in a blisk for a family of blade dominated modes with very similar frequencies). In this case the damping is clearly defined for the tuned traveling waves but not for each blade. The problem is analyzed using the Asymptotic Mistuning Model methodology. A reduced order model is derived that allows us to understand the action mechanism of the intentional mistuning, and gives a simple expression for the estimation of its beneficial effect. The results from the reduced model are compared with those from a finite element model of a more realistic rotor under different forcing conditions.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In