Full Content is available to subscribers

Subscribe/Learn More  >

Degradation Feature Extraction of Rolling Bearings Based on Optimal Ensemble Empirical Mode Decomposition and Improved Composite Spectrum Analysis

[+] Author Affiliations
Fengli Wang, Hua Chen

Dalian Maritime University, Dalian, China

Paper No. GT2018-75041, pp. V07BT34A002; 10 pages
  • ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
  • Volume 7B: Structures and Dynamics
  • Oslo, Norway, June 11–15, 2018
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5114-2
  • Copyright © 2018 by ASME


Rolling bearing is a key part of turbomachinery. The performance and reliability of the bearing is vital to the safe operation of turbomachinery. Therefore, degradation feature extraction of rolling bearing is important to prevent it from failure. During rolling bearing degradation, machine vibration can increase, and this may be used to predict the degradation. The vibration signals are however complicated and nonlinear, making it difficult to extract degradation features effectively. Here, a novel degradation feature extraction method based on optimal ensemble empirical mode decomposition (EEMD) and improved composite spectrum (CS) analysis is proposed. Firstly, because only a few IMFs are expected to contain the information related to bearing fault, EEMD is utilized to pre-process the vibration signals. An optimization method is designed for adaptively determining the appropriate EEMD parameters for the signal, so that the significant feature components of the faulty bearing can be extracted from the signal and separated from background noise and other irrelevant components to bearing faults. Then, Bayesian information criterion (BIC) and correlation kurtosis (CK) are employed to select the sensitive intrinsic mode function (IMF) components and obtain fault information effectively. Finally, an improved CS analysis algorithm is used to fuse the selected sensitive IMF components, and the CS entropy (CSE) is extracted as degradation feature. Experimental data on the test bearings with single point faults separately at the inner race and rolling element were studied to demonstrate the capabilities of the proposed method. The results show that it can assess the bearing degradation status and has good sensitivity and good consistency to the process of bearing degradation.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In