0

Full Content is available to subscribers

Subscribe/Learn More  >

Active Subspace Development of Integrally Bladed Disk Dynamic Properties due to Manufacturing Variations

[+] Author Affiliations
Joseph A. Beck

Perceptive Engineering Analytics, LLC, Minneapolis, MN

Jeffrey M. Brown, Emily B. Carper

AFRL/RQTI, Wright-Patterson AFB, OH

Alex A. Kaszynski

Universal Technology Co., Dayton, OH

Paper No. GT2018-76800, pp. V07AT32A011; 13 pages
doi:10.1115/GT2018-76800
From:
  • ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
  • Volume 7A: Structures and Dynamics
  • Oslo, Norway, June 11–15, 2018
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5113-5
  • Copyright © 2018 by ASME

abstract

The impact of geometry variations on integrally bladed disk eigenvalues is investigated. A large population of industrial Bladed Disks (Blisks) are scanned via a structured light optical scanner to provide as-measured geometries in the form of point-cloud data. The point cloud data is transformed using Principal Component Analysis that results in a Pareto of Principal Components (PCs). The PCs are used as inputs to predict the variation in a Blisk’s eigenvalues due to geometry variations from nominal when all blades have the same deviations. A large subset of the PCs are retained to represent the geometry variation, which proves challenging in probabilistic analyses because of the curse of dimensionality. To overcome this, the dimensionality of the problem is reduced by computing an active subspace that describes critical directions in the PC input space. Active variables in this subspace are then fit with a surrogate model of a Blisk’s eigenvalues. This surrogate can be sampled efficiently with the large subset of PCs retained in the active subspace formulation to yield a predicted distribution in eigenvalues. The ability of building an active subspace mapping PC coefficients to eigenvalues is demonstrated. Results indicate that exploitation of the active subspace is capable of capturing eigenvalue variation.

Copyright © 2018 by ASME
Topics: Manufacturing , Disks

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In