Full Content is available to subscribers

Subscribe/Learn More  >

Investigating Discrepancies in Vibration Bending Fatigue Behavior of Additively Manufactured Titanium 6Al-4V

[+] Author Affiliations
Onome Scott-Emuakpor, Casey Holycross, Tommy George, Luke Sheridan, Emily Carper

Air Force Research Laboratory, Wright-Patterson AFB, OH

Joseph Beck

Perceptive Engineering Analytics LLC, Minneapolis, MN

Paper No. GT2018-75978, pp. V006T24A015; 10 pages
  • ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
  • Volume 6: Ceramics; Controls, Diagnostics, and Instrumentation; Education; Manufacturing Materials and Metallurgy
  • Oslo, Norway, June 11–15, 2018
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5112-8
  • Copyright © 2018 by ASME


The vibration bending fatigue life uncertainty of additively manufactured Titanium (Ti) 6Al-4V specimens is studied. In this investigation, an analysis of microscopic discrepancies between 10 fatigued specimens paired by stress amplitude is correlated to the bending fatigue life scatter. Through scanning electron microscope (SEM) analysis of fracture surfaces and grain structures, anomalies and distinctions such as voids and grain geometries are identified in each specimen. This data along with previously published results are used to support assessments regarding bending fatigue uncertainty. Corrections on stress and scatter based on microscopic features are implemented to the stress versus fatigue life comparisons. The results of this investigation show that the bending fatigue life uncertainty can be bounded by cold-rolled Ti 6Al-4V data when correcting the tested stress amplitude values with stress concentration effects and variation due to microstructure geometries. The understanding gained from this study is important for future development of a predictive vibration bending fatigue life model that will include the probability of geometry, density, and location of voids as an artifact of LPBF build parameters.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In