0

Full Content is available to subscribers

Subscribe/Learn More  >

Adaptive Preliminary-Design Workflow for Aero Engine Secondary Air System Cavities With an Application Case of Windage and Heat Transfer in a Rotor-Stator Cavity With Axial Through Flow

[+] Author Affiliations
Toni Wildow, Klaus Höschler

Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany

Hubert Dengg, Jonathan Sommerfeld

Rolls Royce Deutschland Ltd & Co KG, Blankenfelde-Mahlow, Germany

Paper No. GT2018-76201, pp. V05CT20A002; 12 pages
doi:10.1115/GT2018-76201
From:
  • ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
  • Volume 5C: Heat Transfer
  • Oslo, Norway, June 11–15, 2018
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5110-4
  • Copyright © 2018 by Rolls-Royce Deutschland Ltd & Co KG

abstract

At the preliminary design stage of the engine design process, the behaviour and efficiency of different engine designs are investigated and evaluated in order to find a best matching design for a set of engine objectives and requirements. The prediction of critical part temperatures as well as the reduction of the uncertainty of these predictions is decisive to bid a competitive technology in aerospace technology. Automated workflows and Design of Experiments (DOE) are widely used to investigate large number of designs and to find an optimized solution. Nowadays, technological progress in computational power as well as new strategies for data handling and management enables the implementation of large DOEs and multi-objective optimizations in less time, which also allows the consideration of more detailed investigations in early design stages.

This paper describes an approach for a preliminary-design workflow that implements adaptive modelling and evaluation methods for cavities in the secondary air system (SAS). The starting point for the workflow is a parametric geometry model defining the rotating and static components. The flow network within the SAS is automatically recognized and CFD and Thermal-FE models are automatically generated using a library of generic models. Adaptive evaluation algorithms are developed and used to predict values for structural, air system and thermal behaviour. Furthermore, these models and evaluation techniques can be implemented in a DOE to investigate the impact of design parameters on the predicted values. The findings from the automated studies can be used to enhance the boundary conditions of actual design models in later design stages.

A design investigation on a rotor-stator cavity with axial through flow has been undertaken using the proposed workflow to extract windage, flow field and heat transfer information from adiabatic CFD calculations for use in thermal modelling. A DOE has been set up to conduct a sensitivity analysis of the flow field properties and to identify the impact of the design parameters. Additionally, impacts on the distribution of the flow field parameters along the rotating surface are recognized, which offers a better prediction for local effects in the thermal FE model.

Copyright © 2018 by Rolls-Royce Deutschland Ltd & Co KG

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In