Full Content is available to subscribers

Subscribe/Learn More  >

An Experimental Investigation of Full-Coverage Film Cooling Characteristics of a Turbine Guide Vane

[+] Author Affiliations
Jin Wu, Li Zhang, Li-jian Cheng, Ru Jiang, Zhong-yi Fu, Hui-ren Zhu

Northwestern Polytechnical University, Xi’an, China

Paper No. GT2018-76088, pp. V05CT19A022; 10 pages
  • ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
  • Volume 5C: Heat Transfer
  • Oslo, Norway, June 11–15, 2018
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5110-4
  • Copyright © 2018 by ASME


This paper researches on the effects of Reynolds number and mass flow ratio on the film cooling characteristics at high turbulence intensity (Tu = 15%). The experiment adopted an actual three-dimensional twisted vane and presents the film cooling characteristics on full-coverage film surface in a two-passage, linear cascade. The cooling effectiveness and heat transfer coefficient of the vane’s whole surface were obtained by using transient liquid crystal measurement technique. The transient liquid crystal is SPN/R35C1W, whose bandwidth is 2°C. There are fifteen rows of film cooling holes which have different diameter, injection angle and yaw angle. The secondary flow was supplied by two cavities. The front cavity supplied the secondary flow to thirteen rows of film cooling holes that were arranged in the suction surface, the leading edge and the front half of the pressure surface. The rear cavity supplied the secondary flow to the rear half of pressure surface which included two rows of film cooling holes. The investigated parameters are Reynolds number of 1 × 105, 1.3 × 105 and 1.6 × 105 and the mass flow ratio of MFR = 5.5%∼12.5% (6 cases). The data recorded in the experiment was analyzed with MATLAB.

Results show that the combined effects of mass flow ratio and channel vortex are the maintain reasons that influence the distribution of cooling effectiveness in the contour. Increasing the mass flow ratio can improve the film cooling effectiveness on leading edge and pressure surface, while that presents complex rule on suction surface. Increasing the Reynolds number can improve the heat transfer coefficient at the same mass flow ratio. When increasing the mass flow ratio, the heat transfer coefficient increases on leading edge and pressure surface at Re = 1.6 × 105. However, the decreases at film hole outlet region on the suction side, and not obviously changes at the film hole downstream region.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In