0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical and Experimental Investigation on an Effusion-Cooled Lean Burn Aeronautical Combustor: Aerothermal Field and Metal Temperature

[+] Author Affiliations
D. Bertini, L. Mazzei, S. Puggelli, A. Andreini, B. Facchini

University of Florence, Florence, Italy

L. Bellocci, A. Santoriello

GE Avio S.r.l., Rivalta di Torino, Italy

Paper No. GT2018-76779, pp. V05CT17A010; 13 pages
doi:10.1115/GT2018-76779
From:
  • ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
  • Volume 5C: Heat Transfer
  • Oslo, Norway, June 11–15, 2018
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5110-4
  • Copyright © 2018 by ASME

abstract

Lean burn combustion is increasing its popularity in the aeronautical framework due to its potential in reducing drastically pollutant emissions (NOx and soot in particular). Its implementation, however, involves significant issues related to the increased amount of air dedicated to the combustion process, demanding the redesign of injection and cooling systems. A reduced coolant mass flow rate in conjunction with higher compressor discharge temperature negatively affect the cooling potential thus requiring the exploitation of efficient schemes such as effusion cooling.

This work describes the experimental and numerical final validation of an aeronautical effusion-cooled lean-burn combustor. Full annular tests were carried out to measure temperature profiles and metal temperature distributions at different operating conditions of the ICAO cycle. Such an outcome was obtained also with an in-house developed CHT methodology (THERM3D). RANS simulations with the Flamelet Generated Manifold combustion model were performed to estimate aerothermal field and heat loads, while the coupling with a thermal conduction solver returns the most updated wall temperature. The heat sink within the perforation is treated with a 0D correlative model that calculates the heat pickup and the temperature rise of coolant. The results highlight an overall good capability of the proposed approach to estimate the metal temperature distribution at different operating conditions. It is also shown how more advanced scale-resolving simulations could significantly improve the prediction of turbulent mixing and heat loads.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In