Full Content is available to subscribers

Subscribe/Learn More  >

Unsteady Effects on the Experimental Determination of Overall Effectiveness

[+] Author Affiliations
James L. Rutledge, William P. Baker

Air Force Institute of Technology, Wright-Patterson AFB, OH

Paper No. GT2018-75846, pp. V05BT13A006; 13 pages
  • ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
  • Volume 5B: Heat Transfer
  • Oslo, Norway, June 11–15, 2018
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5109-8


An increasingly common experimental method allows determination of the overall effectiveness of a film cooled turbine component. This method requires the Biot number of the experimental model to match that of the engine component such that the nondimensional surface temperature, ϕ, is matched to that of the engine component. The matched Biot number requirement effectively places a requirement on the thermal conductivity of the model and the traditional implementation places no requirement on the model’s density or specific heat. However, such is not the case if such a model is exposed to unsteadiness in the flow such as with film cooling unsteadiness. In this paper, we develop an additional nondimensional parameter that must also be theoretically matched to conduct overall effectiveness experiments with unsteady film cooling. Since finding suitable materials with an acceptable combination of thermodynamic properties for a typical low temperature experiment can be difficult, simulations were conducted to determine the impact of imperfectly matched parameters achievable with common materials. Because the disparity between the diffusion and unsteadiness time scales can hinder numerical simulation, a novel analytical solution to the heat equation with relevant unsteady Robin type boundary conditions is developed. Particular solutions are examined to determine the sensitivity of the temperature response of a turbine blade (or a model of one) to its material properties and the form of the unsteady variation in the convection parameters. It is shown that it is possible to obtain useful experimental results even with imperfectly matched parameters.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In