0

Full Content is available to subscribers

Subscribe/Learn More  >

Influence of Scaling Parameters and Gas Properties on Overall Effectiveness on a Leading Edge Showerhead

[+] Author Affiliations
Connor J. Wiese, Carol E. Bryant

Air Force Research Laboratory, Wright Patterson AFB, OH

James L. Rutledge, Marc D. Polanka

Air Force Institute of Technology, Wright Patterson AFB, OH

Paper No. GT2018-75332, pp. V05BT13A003; 14 pages
doi:10.1115/GT2018-75332
From:
  • ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
  • Volume 5B: Heat Transfer
  • Oslo, Norway, June 11–15, 2018
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5109-8

abstract

Testing new turbine cooling schemes at engine conditions becomes increasingly cost prohibitive as the desired gas-path temperatures increase. As a result, the turbine component is simulated in a laboratory with a large-scale model that is sized and constructed out of a selected material so that the Biot number is matched between the laboratory and engine conditions. Furthermore, the experimental temperatures are lower, so the surface temperature that the metal component would experience in the engine is scaled via the overall cooling effectiveness, ϕ.

Properly measuring ϕ requires that the relevant flow physics must be matched, thus the relevant Reynolds numbers be matched-both those of the freestream and the coolant, as well as the other scaling parameters, such as the mass flux, momentum flux, and velocity ratios. However, if the coolant-to-freestream density ratio does not match that of the engine condition, the mass flux, momentum flux, coolant and freestream Reynolds numbers, and coolant-to-freestream velocity ratios cannot be matched simultaneously to the engine condition. Furthermore, the coolant thermal transfer properties are unaccounted for in these parameters, despite their large influence on the resultant overall effectiveness. While a good deal of research has focused on the effects of the coolant-to-freestream density ratio, this study specifically examines the influence of other thermodynamic properties, in particular the specific heat, which differ substantially between experimental and engine conditions. This study demonstrates the influence of various coolant properties on the overall effectiveness distribution on a leading edge by selectively matching M, I, and ACR with air, argon and carbon dioxide coolants.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In