0

Full Content is available to subscribers

Subscribe/Learn More  >

Effects of the Location of the Pocket Cavity on Heat Transfer and Flow Characteristics of the Endwall With a Symmetrical Vane

[+] Author Affiliations
Jian Liu, Safeer Hussain, Lei Wang, Bengt Sundén

Lund University, Lund, Sweden

Gongnan Xie

Northwestern Polytechnical University, Xi’an, China

Paper No. GT2018-75177, pp. V05BT13A002; 12 pages
doi:10.1115/GT2018-75177
From:
  • ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
  • Volume 5B: Heat Transfer
  • Oslo, Norway, June 11–15, 2018
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5109-8
  • Copyright © 2018 by ASME

abstract

A pocket cavity is generated at the junction position of the Low Pressure Turbine (LPT) and the Outlet Guide Vane (OGV) in the rear part of a gas turbine engine. The OGV mainly controls the exhaust flow exiting and provides structural strength of the main engine frame. In the present work, the effect the location of the pocket on the heat transfer of the endwall with a symmetrical vane is investigated. A triangular pocket cavity is built in a rectangular channel and a symmetric vane is put on the endwall downstream of the pocket cavity. Heat transfer and turbulent flow characteristics over the endwall are investigated experimentally and numerically. The distance between the pocket cavity and the symmetrical vane is varied from 10 cm, 15 cm, and 20 cm. Liquid Crystal Thermography (LCT) is employed to measure the heat transfer over the endwall at Reynolds number ranging from 87,600 to 219,000. The turbulent flow details are presented by numerical calculations with the turbulence models, i.e., the k-ω SST model. From this study, high heat transfer regions are usually found at where flow impingement appears, i.e., the pocket boundary edge region and the vane head region. Compared with the case of the smooth channel, the heat transfer is decreased when a pocket cavity is placed upstream of the vane. With the distance between the pocket cavity and the vane becoming larger, the effect of the pocket cavity is weakened and the heat transfer is approaching the smooth channel case, i.e., case 0. The pocket cavity strengthens the flow shedding and separates the flow away from the endwall. The pushed upward flow weakens the flow impingement on the vane and then leads to the decreased heat transfer around the vane.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In