0

Full Content is available to subscribers

Subscribe/Learn More  >

Feature Extraction From Time Resolved Reacting Flow Data Sets

[+] Author Affiliations
H. Ek, I. Chterev, N. Rock, B. Emerson, J. Seitzman, T. Lieuwen

Georgia Institute of Technology, Atlanta, GA

N. Jiang

Spectral Energies, LLC, Dayton, OH

W. Proscia

Pratt & Whitney, East Hartford, CT

Paper No. GT2018-77051, pp. V04BT04A048; 14 pages
doi:10.1115/GT2018-77051
From:
  • ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
  • Volume 4B: Combustion, Fuels, and Emissions
  • Oslo, Norway, June 11–15, 2018
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5106-7
  • Copyright © 2018 by ASME

abstract

This paper presents measurements of the simultaneous fuel distribution, flame position and flow velocity in a high pressure, liquid fueled combustor. Its objective is to develop methods to process, display and compare large quantities of instantaneous data with computations. However, time-averaged flow fields rarely represent the instantaneous, dynamical flow fields in combustion systems. It is therefore important to develop methods that can algorithmically extract dynamical flow features and be directly compared between measurements and computations. While a number of data-driven approaches have been previously presented in the literature, the purpose of this paper is to propose several approaches that are based on understanding of key physical features of the flow — for this reacting swirl flow, these include the annular jet, the swirling flow which may be precessing, the recirculating flow between the annular jets, and the helical flow structures in the shear layers. This paper demonstrates nonlinear averaging of axial and azimuthal velocity profiles, which provide insights into the structure of the recirculation zone and degree of flow precession. It also presents probability fields for the location of vortex cores that enables a convenient method for comparison of their trajectory and phasing with computations. Taken together, these methods illustrate the structure and relative locations of the annular fluid jet, recirculating flow zone, spray location, flame location, and trajectory of the helical vortices.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In