0

Full Content is available to subscribers

Subscribe/Learn More  >

Stability and Limit Cycles of a Nonlinear Damper Acting on a Linearly Unstable Thermoacoustic Mode

[+] Author Affiliations
Claire Bourquard, Nicolas Noiray

ETH Zürich, Zürich, Switzerland

Paper No. GT2018-76838, pp. V04BT04A036; 10 pages
doi:10.1115/GT2018-76838
From:
  • ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
  • Volume 4B: Combustion, Fuels, and Emissions
  • Oslo, Norway, June 11–15, 2018
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5106-7
  • Copyright © 2018 by ASME

abstract

The resonant coupling between flames and acoustics is a growing issue for gas turbine manufacturers. They can be reduced by adding acoustic dampers on the combustion chamber walls. Nonetheless, if the engine is operated out of the stable window, the damper may be exposed to high-amplitude acoustic levels, which may trigger unwanted nonlinear effects. This work aims at providing an overview of the dynamics associated with those limit cycles using a simple analytical model, where a perfectly tuned damper is coupled to the combustion chamber. The damper, crossed by a purge flow in order to prevent hot gas ingestion, is modeled as a non-linearly damped harmonic oscillator, with vortex shedding as the main dissipation mechanism. The combustion chamber featuring a linearly unstable thermoacoustic mode is modelled as a Van der Pol oscillator. The fixed points of the coupled system and their stability can be determined by analyzing the averaged amplitude equations. This allows the computation of a fixed point topology map as function of the growth rate of the unstable mode and the mean velocity through the damper neck. Simulink simulations are also performed and compared to the analytical predictions. Finally, experiments are performed on a simple rectangular cavity, where the thermoacoustic instability resulting from the interaction between heat release and acoustic pressure is mimicked by an electro-acoustic instability. A feedback loop is built, where the signal from a microphone is filtered, delayed, and amplified before being sent to a loudspeaker placed inside the rectangular cavity. The delay and gain of the feedback loop can be modified to change the growth rate of the instability. One Helmholtz damper can be added to the cavity and tuned to the unstable mode of interest. The growth rate reduction capabilities of the damper and the amplitude of the limit cycle in the unstable cases are in good agreement with the analytical and numerical predictions, underlining the potentially dangerous behavior of the limit cycles which should be taken into account for real engine cases.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In