0

Full Content is available to subscribers

Subscribe/Learn More  >

Ignition Dynamics in an Annular Combustor With Gyratory Flow Motion

[+] Author Affiliations
Chenran Ye, Gaofeng Wang, Yuanqi Fang, Chengbiao Ma, Liang Zhong

Zhejiang University, Hangzhou, China

Stephane Moreau

Université de Sherbrooke, Sherbrooke, QC, Canada

Paper No. GT2018-76624, pp. V04BT04A030; 9 pages
doi:10.1115/GT2018-76624
From:
  • ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
  • Volume 4B: Combustion, Fuels, and Emissions
  • Oslo, Norway, June 11–15, 2018
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5106-7
  • Copyright © 2018 by ASME

abstract

In concepts of integrated design of combustor and turbine, an annular combustor model is developed and featured with multiple oblique-injecting swirling injectors to introduce gyratory flow motion in the combustion chamber. The ignition process is experimentally investigated to study the effects of introducing circumferential velocity component Uc to the light-round sequence. Experiments are carried out with premixed propane/air mixture in ambient conditions. The light-round sequence is recorded by a high-speed camera, which provides detailed flame azimuthal positions during the sequence and gives access to the light-round time τ and the circumferential flame propagation speed Sc. The results have also been compared with that obtained from a straight-injecting annular combustor. The effects of bulk velocity Ub, thermal power P and equivalence ratio Φ are also explored. Due to the gyratory flow motion induced by oblique injection, the flame fronts only propagate along the direction of circumferential flow. Both of the circumferential flame propagation speed increase with increasing bulk velocity in two injection types. It seems mainly to depend on bulk velocity, regardless of Φ, in oblique-injecting combustor when compared with the straight one. It indicates that the circumferential velocity component would play a dominant role in light-round sequence when it is sufficient higher than the displacement flame speed.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In