0

Full Content is available to subscribers

Subscribe/Learn More  >

LES of Hydrogen Enriched Methane/Air Combustion in the SGT-800 Burner at Real Engine Conditions

[+] Author Affiliations
Daniel Moëll, Daniel Lörstad

Siemens Industrial Turbomachinery AB, Finspång, Sweden

Xue-Song Bai

Lund University, Lund, Sweden

Paper No. GT2018-76434, pp. V04BT04A023; 12 pages
doi:10.1115/GT2018-76434
From:
  • ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
  • Volume 4B: Combustion, Fuels, and Emissions
  • Oslo, Norway, June 11–15, 2018
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5106-7
  • Copyright © 2018 by Siemens Industrial Turbomachinery AB

abstract

DLE (Dry Low Emission) techniques are widely used today to reduce the harmful NOx emissions associated with high combustion temperatures. In many DLE systems the fuel and air are pre-mixed which effectively keep the flame temperature as low as possible, ideally equal to the turbine inlet temperature. By using pre-mixing stability issues such as flash back and combustion driven dynamics may occur. Operating the engine with hydrogen diluted natural gas will decrease the flash back limits of the system due to the high diffusivity and highly reactive nature of hydrogen. In this study the stability effects of hydrogen diluted into methane in the Siemens SGT-800 combustor is studied. The SGT-800 combustor is an annular combustor where the flame is stabilized using a swirl burner combined with a sudden expansion combustor. The expansion gives rise to a vortex break down where the flame stabilizes in the local low speed zones. Here a single burner sector is studied using the flow solver Siemens PLM software STAR-CCM+. The turbulence is simulated through the use of LES (Large Eddy Simulation) where the largest energy carrying flow scales are resolved and only the smaller scales are modelled. The chemistry is coupled to the turbulent flow simulation by the use of FGM (Flamelet Generated Manifolds) which are integrated using presumed probability density functions. The FGM approach assumes that the local flame structure is laminar and that all species across a flame can be related to a set of control variables. The control variables in this case are the heat loss, the mixture fraction and its variance and a reaction progress variable. In this paper two effects are studied, first the transition from an atmospheric flame to a pressurized flame and second the effect of hydrogen enrichment. The flame shape and position are mainly affected by the transition from atmospheric to high pressure, where the power density increases by almost a factor of 20. The flame is moving further upstream closer to the burner in all pressurized cases. The hydrogen enrichment plays a strong role in how the combustion driven dynamics is coupling with the acoustics of the rig. The high pressure pure methane case show a strong pressure peak whereas the hydrogen enriched case dampens that peak and distributes the energy to other frequencies. This work shows that high fidelity CFD is capable of capturing complex flow and flame interactions such as thermoacoustic instabilities in industrial scale systems.

Copyright © 2018 by Siemens Industrial Turbomachinery AB

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In