0

Full Content is available to subscribers

Subscribe/Learn More  >

Investigation of H2/CH4-Air Flame Characteristics of a Micromix Model Burner at Atmosphere Pressure Condition

[+] Author Affiliations
Xunwei Liu, Weiwei Shao, Yong Tian, Yan Liu, Bin Yu, Zhedian Zhang, Yunhan Xiao

Chinese Academy of Sciences, Beijing, China

Paper No. GT2018-76276, pp. V04BT04A015; 10 pages
doi:10.1115/GT2018-76276
From:
  • ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
  • Volume 4B: Combustion, Fuels, and Emissions
  • Oslo, Norway, June 11–15, 2018
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5106-7
  • Copyright © 2018 by ASME

abstract

For high-hydrogen-content fuel, the Micromix Combustion Technology has been developed as a potential low NOx emission solution for gas turbine combustors, especially for advanced gas turbines with high turbine inlet temperature. Compared with conventional lean premixed flames, multiple distributed slim and micro flames could lead to a lower NOx emission performance for shortening residence time of high temperature flue gas and generally a more uniform temperature distribution.

This work aims at micromix flame characteristics of a model burner fueled with hydrogen blending with methane under atmosphere pressure conditions. The model burner assembly was designed to have six concentrically millimeter-sized premixed units around a same unit centrally. Numerical and experimental studies were conducted on mixing performance, flame stability, flame structure and CO/NOx emissions of the model burner. OH radical distribution by OH-PLIF and OH chemiluminescence (OH*) imaging were employed to analyze the turbulence-reaction interactions and characters of the reaction zone at the burner exit. Micromix flames fueled with five different hydrogen content H2-CH4 (60/40, 50/50, 40/60, 30/70, 0/100 Vol.%) were investigated, along with the effects of equivalence ratio and heat load. Results indicated that low NOx emissions of less than 10 ppm (@15% O2) below the exhaust temperature of 1920 K were obtained for all the different fuels. Combustion oscillation didn’t occur for all the conditions. It was found that at a constant flame temperature, the higher the hydrogen content of the fuel, the higher the turbulent flame speed and the weaker the flame lift effect. Combustion noise and NOx emissions also increase with increasing hydrogen content. The OH/OH* signal distribution indicated that a pure methane micromix flame showed a lifted and weaken distributed feature.

Copyright © 2018 by ASME
Topics: Pressure , Flames , Methane

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In