0

Full Content is available to subscribers

Subscribe/Learn More  >

Fuel Interchangeability Effects on the Lean Blowout for a Lean Premixed Swirl Stabilized Fuel Nozzle

[+] Author Affiliations
Siddhartha Gadiraju, Suhyeon Park, Prashant Singh, Jaideep Pandit

Virginia Tech, Blacksburg, VA

Srinath V. Ekkad

North Carolina State University, Raleigh, NC

Federico Liberatore, Ram Srinivasan, Yin-hsiang Ho

Solar Turbine, Inc., San Diego, CA

Paper No. GT2018-76249, pp. V04BT04A012; 8 pages
doi:10.1115/GT2018-76249
From:
  • ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
  • Volume 4B: Combustion, Fuels, and Emissions
  • Oslo, Norway, June 11–15, 2018
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5106-7
  • Copyright © 2018 by ASME and Solar Turbines Incorporated

abstract

This work is motivated by an interest in understanding the fuel interchangeability of a fuel nozzle to operate under extreme lean operating conditions. A lean premixed, swirl-stabilized fuel nozzle designed with central pilot hub was used to test various fuel blends for combustion characteristics. Current gas turbine combustion technology primarily focuses on burning natural gas for industrial systems. However, interest in utilizing additional options due to environmental regulations as well as concerns about energy security have motivated interest in using fuel gases that have blends of Methane, Propane, H2, CO, CO2, and N2. For example, fuel blends of 35%/60% to 55%/35% of CH4/CO2 are typically seen in Landfill gases. Syngas fuels are typically composed primarily of H2, CO, and N2. CH4/N2 fuel blend mixtures can be derived from biomass gasification.

Stringent emission requirements for gas turbines stipulate operating at extreme lean conditions, which can reduce NOx emissions. However, lean operating conditions pose the problem of potential blowout resulting in loss of performance and downtime. Therefore, it is important to understand the Lean Blowout (LBO) limits and involved mechanisms that lead to a blowout. While a significant amount of research has been performed to understand lean blowout limits and mechanisms for natural gas, research on LBO limits and mechanisms for fuel blends has only been concentrated on fuel blends of CH4 and H2 such as syngas. This paper studies the lean blowout limits with fuel blends CH4-C3H8, CH4-CO2, and CH4-N2 and also their effect on the stability limits as the pilot fuel percentage was varied. Experimental results demonstrate that the addition of propane, nitrogen and carbon dioxide has minimal effect on the adiabatic flame temperature when the flame becomes unstable under lean operating conditions. On the other hand, the addition of diluent gas showed a potential blowout at higher adiabatic temperatures.

Copyright © 2018 by ASME and Solar Turbines Incorporated
Topics: Fuels , Nozzles

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In