0

Full Content is available to subscribers

Subscribe/Learn More  >

Influence of Autoignition Kernel Development on the Flame Stabilisation of Hydrogen-Nitrogen Mixtures in Vitiated Air of High Temperature

[+] Author Affiliations
Christoph A. Schmalhofer, Peter Griebel, Manfred Aigner

German Aerospace Center (DLR), Stuttgart, Germany

Paper No. GT2018-75483, pp. V04AT04A032; 12 pages
doi:10.1115/GT2018-75483
From:
  • ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
  • Volume 4A: Combustion, Fuels, and Emissions
  • Oslo, Norway, June 11–15, 2018
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5105-0
  • Copyright © 2018 by ASME

abstract

Autoignition and flame stabilisation in a gas turbine combustor presents severe challenges for safe and reliable gas turbine operation as soon as they occur in parts of the combustor that are not designed to sustain higher thermal loads. Especially when operating on highly-reactive fuels like hydrogen, higher autoignition and flashback risk associated with these fuels have to be taken into account. In the present study, flame stabilisation initiated by autoignition events is investigated in an optically accessible mixing duct of a generic reheat combustor at typical reheat conditions. The experiments were conducted at pressures of 15 bar, vitiated air temperatures higher than 1100 K and bulk velocity of 200 m/s. The fuel was a hydrogen-nitrogen mixture with up to 70 vol. % hydrogen and was injected by a coflow inline injector along with preheated carrier air of temperatures up to 623 K. The autoignition-driven flame stabilisation process was investigated by recording the luminescence signal with high-speed cameras and by tracking the temporal and spatial development of autoignition kernels in the mixing duct. A detailed and comprehensive data set could be generated providing the basis for an in-depth analysis of the stabilisation process on time scales down to 0.3 milliseconds, which is fast enough to disclose the small timescales at which the autoignition kernels develop in the mixing section. A stabilising sequence was found to lead to the stabilised flames due to a non-interrupted sequence of autoignition kernels. The stabilising sequence was found behave differently in two different temperature regimes where sequence durations and amounts of kernels differed significantly from each other. A state in which the cross section of the mixing section is fully blocked by one or more kernels in vertical direction could be identified for all operating conditions and the development of subsequent autoignition kernels after the section blockage changed clearly once this state was reached.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In