0

Full Content is available to subscribers

Subscribe/Learn More  >

Tomographic PIV in the Near Field of a Swirl-Stabilised Fuel Injector

[+] Author Affiliations
Adrian Spencer, Mark Brend, Daniel Butcher, David Dunham, Liangta Cheng

Loughborough University, Loughborough, UK

Dave Hollis

LaVision UK, Ltd., Bicester, UK

Paper No. GT2018-75201, pp. V04AT04A010; 10 pages
doi:10.1115/GT2018-75201
From:
  • ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
  • Volume 4A: Combustion, Fuels, and Emissions
  • Oslo, Norway, June 11–15, 2018
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5105-0
  • Copyright © 2018 by ASME

abstract

The isothermal flow fields of injectors have undergone several computational and experimental investigations using point and planar measurement techniques,. Within the swirl induced vortex breakdown region it is only LES that has been able to predict fully the presence of a three dimensional helical vortex structure for a particular injector, and in certain conditions (no central fuel jet), a precessing vortex core. These structures can be elucidated from point and planar measurements and favorable comparisons of velocity statistics between experiment and LES predictions strengthen these findings. However, volumetric, 3-component measurement of velocity data has not been widely available to provide conclusive evidence of the exact three dimensional nature of the vortex structures that exist.

An experimental setup utilizing time resolved tomographic PIV on a water flow rig is described in this paper. This is used to provide as high-quality aerodynamic study as possible of a single stream radially-fed air swirl gaseous fuel injector. The level of accuracy of the tomographic PIV technique is demonstrated by calculating the divergence of the velocity field as well as validating the results against a comprehensive 2 and 3 component standard PIV velocity database and other measurement techniques and predictions.

Structure identification methods have been employed to visualise and understand the complex flow topology within the near field of the injector. The change in topology with and without the stabilising central jet is further investigated and agrees with findings of planar PIV results. While the velocity error associated with the tomo-PIV results is higher than the planar results the data agree well within the identified uncertainty bounds and are complimentary in understanding the flow field structure. Thus a full volumetric aerodynamic survey is available for the first time on this isothermal flow case.

Copyright © 2018 by ASME
Topics: Fuel injectors

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In