Full Content is available to subscribers

Subscribe/Learn More  >

A Methodology for Fully-Coupled CFD Engine Simulations, Applied to a Micro Gas Turbine Engine

[+] Author Affiliations
Mateus Teixeira, Luigi Romagnosi, Mohamed Mezine, Yannick Baux, Jan Anker, Kilian Claramunt, Charles Hirsch

NUMECA International, Brussels, Belgium

Paper No. GT2018-76870, pp. V02CT42A047; 10 pages
  • ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
  • Volume 2C: Turbomachinery
  • Oslo, Norway, June 11–15, 2018
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5101-2
  • Copyright © 2018 by ASME


The development of new generations of aircraft engines with reduced environmental impact heavily relies on high-fidelity 3D numerical analysis of the main engine components, compressor, combustion chamber, turbine and their interactions, including the transient and off-design behavior of the full engine.

Unlike component-by-component analysis, which requires separate assumptions for the pressure and temperature boundary conditions for each component, a fully coupled approach requires only knowledge of the compressor inlet and turbine outlet flow conditions. In addition, the engine rotation speed can also be varied during the simulation to converge to the correct balance of power between compressor and turbine.

This integrated approach provides a detailed description of the flow field inside the full engine at the desired operating point with one single CFD simulation.

The full engine simulation methodology can be developed at several levels: (1) RANS simulations with mixing-plane interfaces between components; (2) advanced RANS treatment with inputs from the nonlinear harmonic (NLH) methodology to allow for tangential non-uniformity, such as hot streaks entering the turbine nozzle from the combustor; (3) inclusion of the unsteady rotor-stator interactions, via NLH, in compressor and turbine stages; (4) coupling with LES simulations in the combustor.

This paper presents results from levels (1) and (2) of this methodology applied to a micro-turbine gas engine including the HP compressor, combustor, HP and LP turbines and the exhaust hood. The geometry has been obtained from the redesign of the KJ66 micro gas turbine engine using preliminary design tools. The injection and burning of fuel inside the combustion chamber are modeled with a simplified flamelet model. The paper presents the approach and results of the full engine simulation; as well as the initial steps towards level (3).

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In