Full Content is available to subscribers

Subscribe/Learn More  >

Assessment of Scale Adaptive Simulation of a Rotor of High Pressure Compressor

[+] Author Affiliations
J. Marty

ONERA - The French Aerospace Lab, Meudon, France

H. Gaible, H. Bézard

ONERA - The French Aerospace Lab, Toulouse, France

Paper No. GT2018-76537, pp. V02CT42A037; 20 pages
  • ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
  • Volume 2C: Turbomachinery
  • Oslo, Norway, June 11–15, 2018
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5101-2
  • Copyright © 2018 by ASME


The main design objectives of a high pressure compressor are the aerodynamic efficiency and the operating range (e.g. the surge margin). Those quantities are impacted by secondary and leakage flows occurring in the blade passage such as corner separation or stall and tip leakage flows. The turbulence modeling influences strongly the prediction of the overall performances. The aims of the present study were (i) the validation of the combination of the SAS approach with the DRSM turbulence model by comparison to experimental data, especially to laser measurements in the tip of a rotor of a high pressure compressor and (ii) the discussion of the flow prediction improvements with respect to turbulence approaches classically used in CFD and industry: URANS simulations and standard SAS simulation i.e. combined with SST turbulence model. The SAS results are compared to experimental data and to URANS results (SST and DRSM). Only the simulations with IGV wakes predict the velocity fluctuations near tip gap, from the leading edge. Concerning the time-averaged performances, the stagnation pressure losses are slightly overestimated by SAS, especially with DRSM model. This is due to an amplification of the hub corner separation. Moreover, the isentropic efficiency is very sensitive to the SAS approach and to the turbulence model. The spectral analysis shows that the prediction of the amplitude and frequencies of the power spectral density of static pressure is improved using the SAS approach instead of URANS one. The SAS approach leads to PSD similar to ZDES, especially with the DRSM model. Thus, the SAS-DRSM is able to well predict the tip leakage flow with the fine mesh. Nevertheless, this approach amplifies the hub corner separation leading to a strong underestimation of overall performances.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In