0

Full Content is available to subscribers

Subscribe/Learn More  >

Tip Leakage Flow Reduction of a Linear Turbine Cascade Using String-Type DBD Plasma Actuators

[+] Author Affiliations
Takayuki Matsunuma, Takehiko Segawa

National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan

Paper No. GT2018-76680, pp. V02BT41A026; 13 pages
doi:10.1115/GT2018-76680
From:
  • ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
  • Volume 2B: Turbomachinery
  • Oslo, Norway, June 11–15, 2018
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5100-5
  • Copyright © 2018 by ASME

abstract

Tip leakage flow through the small gap between the blade tip of a turbine and the casing endwall reduces the aerodynamic performance. String-type dielectric barrier discharge (DBD) plasma actuators made of silicone printed-circuit board were used for the active control of the tip leakage flow of a linear turbine cascade. Sinusoidal voltage excitation with amplitude varying from 4 kV to 6 kV (peak-to-peak voltage: 8 kVp-p to 12 kVp-p) and fixed frequency of 10 kHz was applied to the plasma actuators. The two-dimensional velocity field in the blade passage was estimated by particle image velocimetry (PIV) under the very low Reynolds number conditions of Re = 7.1 × 103 and 1.42 × 104. The tip leakage flow was reduced by the flow control using plasma actuators. The high turbulence intensity region caused by the tip leakage flow was also reduced. For the quantitative comparisons, the displacement thickness of the absolute velocity distributions was examined. By the flow control of the plasma actuators, the displacement thickness at tip-side gradually decreased as the input voltage increased. Although three types of plasma actuators were used, with thin, thick, and flat electrodes and different ratios of discharge area, the differences in their effect were negligible. The reason for these very small differences in effect is the wide spread of the plasma discharge from the encapsulated electrode in the plasma actuator to the exposed electrode of the blade tip. At the relatively high Reynolds number condition of Re = 1.42 × 104, the effect of the plasma actuator was smaller than that at the lower Reynolds number condition of Re = 7.1 × 103.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In