0

Full Content is available to subscribers

Subscribe/Learn More  >

A Top-Down Approach for Quantifying the Contribution of High Pressure Compressor Deterioration Mechanisms to the Performance Deterioration of Turbofan Engines

[+] Author Affiliations
Helena Vogel, André Kando, Holger Schulte

MTU Aero Engines AG, Munich, Germany

Stephan Staudacher

University of Stuttgart, Stuttgart, Germany

Paper No. GT2018-75558, pp. V001T01A010; 10 pages
doi:10.1115/GT2018-75558
From:
  • ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
  • Volume 1: Aircraft Engine; Fans and Blowers; Marine
  • Oslo, Norway, June 11–15, 2018
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5098-5
  • Copyright © 2018 by ASME

abstract

Maintenance costs are a substantial contributor to airline operating costs. In this context, understanding, analyzing, and predicting engine performance deterioration is crucial. While diagnostic methods for analyzing the current module and overall engine condition are established in state-of-the-art engine condition monitoring (ECM) systems, deterioration modeling and prognosis are still fields of research. The identification of the contribution of deterioration mechanisms, such as fouling, erosion, and abrasion, to the in-service deterioration poses a key challenge in this area. This paper focuses on a top-down approach for the high pressure compressor (HPC) module. The selected approach is to quantify the contribution of individual deterioration mechanisms to the overall HPC efficiency deterioration based on in-flight measurements. This is accomplished by first using the in-flight measurements to analyze the HPC efficiency loss. Then, the resulting time series of the analyzed HPC efficiency loss are preprocessed. Finally, models of the deterioration mechanisms are fitted to the preprocessed time series. The deterioration models are chosen based on literature references to the respective deterioration mechanisms. As multiple influencing factors affect the deterioration mechanisms, a fleet analysis is conducted to select the model inputs. The fitting process involves a parametric nonlinear regression problem. The outcome is an estimation of the evolution of the deterioration mechanisms over time. This methodology is used to evaluate all available in-service engines of the same type and fleet and to define a fleet model. In the final step, benefits and limitations of the fleet model are investigated.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In