0

Full Content is available to subscribers

Subscribe/Learn More  >

Spontaneous Displacement of Resident Fluid in Heterogeneous Porous Medium

[+] Author Affiliations
Shabina Ashraf, Jyoti Phirani

Indian Institute of Technology Delhi, New Delhi, India

Paper No. ICNMM2018-7737, pp. V001T05A004; 8 pages
doi:10.1115/ICNMM2018-7737
From:
  • ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels
  • Dubrovnik, Croatia, June 10–13, 2018
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5119-7
  • Copyright © 2018 by ASME

abstract

Surface tension driven flow in which one fluid displaces another is of importance in microfluidic devices for diagnostics, lab on chip devices and flow in oil reservoirs. Spontaneous impregnation of a preferentially wetting phase displacing an existing non-wetting phase in a homogeneous porous medium is known to follow diffusive dynamics. However, in a heterogeneous porous medium the hydrodynamic interaction between the narrow and the wide pores significantly alters the impregnation behavior. Previous studies have shown that the imbibing fluid interface leads in the narrow pores contrary to the predictions from the diffusive dynamics of homogeneous porous medium. This is due to the higher suction pressure in the narrow pores which draw fluid from the wide pores. The effect of fluid properties and relative flow properties of the pores with respect to other pores on the non-wetting fluid displacement in the heterogeneous porous medium is still unknown. In the current work, we develop a quasi one-dimensional, lubrication approximation model, which predicts the spontaneous imbibition in a heterogeneous porous medium. We explore all the possible relative fluid properties and flow properties of the layers in the heterogeneous porous medium and show that our model is able to predict the flow behavior in all the cases. We also present the results of the spontaneous imbibition experiments, which agree with our model. The experiments show that the two phase interface progresses faster in the narrow pores as predicted by the one-dimensional model. The result is important for predicting and controlling the flow behavior in a heterogeneous porous medium.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In