0

Full Content is available to subscribers

Subscribe/Learn More  >

Mechanisms Underlying Foam-Based Electronucleation of Hydrates

[+] Author Affiliations
Palash V. Acharya, Denise Lin, Vaibhav Bahadur

University of Texas at Austin, Austin, TX

Paper No. ICNMM2018-7721, pp. V001T04A004; 5 pages
doi:10.1115/ICNMM2018-7721
From:
  • ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels
  • Dubrovnik, Croatia, June 10–13, 2018
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5119-7
  • Copyright © 2018 by ASME

abstract

Nucleation of clathrate hydrates at low temperatures is constrained by very long induction (wait) times, which can range from hours to days. Electronucleation (application of an electrical potential difference across the hydrate forming solution) can significantly reduce the induction time. This work studies the use of porous open-cell foams of various materials as electronucleation electrodes. Experiments with tetrahydrofuran (THF) hydrates reveal that aluminum and carbon foam electrodes can enable voltage-dependent nucleation, with induction times dependent on the ionization tendency of the foam material. Furthermore, we observe a non-trivial dependence of the electronucleation parameters such as induction time and the recalescence temperature on the water:THF molar ratio. This study further corroborates previously developed hypotheses which associated rapid hydrate nucleation with the formation of metal-ion coordination compounds. Overall, this work studies various aspects of electronucleation with aluminum and carbon foams.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In