Full Content is available to subscribers

Subscribe/Learn More  >

Heat Transfer Model for Liquid-Liquid Taylor Flow in Mini-Scale Coiled Tubing

[+] Author Affiliations
W. M. Adrugi, Y. S. Muzychka, K. Pope

Memorial University of Newfoundland, St. John’s, NL, Canada

Paper No. ICNMM2018-7743, pp. V001T02A019; 9 pages
  • ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels
  • Dubrovnik, Croatia, June 10–13, 2018
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5119-7
  • Copyright © 2018 by ASME


In this paper, an experimental study on heat transfer enhancement using non-boiling liquid-liquid Taylor flow in mini scale coiled tubing for constant wall temperature conditions is conducted. Coiled copper tubing with different radii of curvature and lengths were used as test sections. Segmented slug flow with water and three low viscosity silicone oils (1 cSt, 3 cSt, 5 cSt) were used to examine the effect of Prandtl number on heat transfer rates in coiled tubing. Additionally, benchmark tests were conducted of single-phase flow in a straight tube. The experimental results are compared with models for liquid-liquid Taylor flow in straight and coiled tubing. This research provides new insights on the enhanced heat transfer rates attainable with using liquid-liquid Taylor flow in mini scale coiled tubing. This enhancement occurs due to internal circulation and secondary flow in the fluid segments.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In