Full Content is available to subscribers

Subscribe/Learn More  >

Flow Regime Detection of Boiling Flow in Microchannels Using Electrical Sensing Elements Validated by Videography

[+] Author Affiliations
Mohammadmahdi Talebi, Keith Cobry, Peter Woias

University of Freiburg, Freiburg, Germany

Sahba Sadir, Roland Dittmeyer

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Paper No. ICNMM2018-7729, pp. V001T02A016; 6 pages
  • ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels
  • Dubrovnik, Croatia, June 10–13, 2018
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5119-7
  • Copyright © 2018 by ASME


In this work we present a method that provides the possibility to analyze directly the electrical properties of two-phase flow in microchannel boiling systems. It is shown that the use of impedimetric sensing techniques can be used to track two-phase boiling flow. In order to perform such measurements, the electrical impedance of the composite medium in the channel is measured using planar capacitive elements that are implemented over the channel on a glass lid. Working electrodes are fabricated using indium tin oxide on glass and are compressed against a precision machined metal microchannel. Therefore, it is possible to visually analyze two-phase flow inside the microchannel while simultaneously performing electrical impedance measurements. In order to prevent electrochemical reactions between the fluid inside the microchannel and electrodes on the glass lid, a thin layer of SU8 photoresist was deposited as a protective layer. The electrical impedance measurements were characterized over two-phase flow regimes including bubbly flow, slug flow and annular flow via comparison with simultaneous video recordings.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In