0

Bayesian Framework to Quantify Uncertainties in Piezoelectric Energy Harvesters PUBLIC ACCESS

[+] Author Affiliations
Patricio Peralta, Rafael O. Ruiz, Viviana Meruane

Universidad de Chile, Santiago, Chile

Paper No. VVS2018-9318, pp. V001T04A002; 7 pages
doi:10.1115/VVS2018-9318
From:
  • ASME 2018 Verification and Validation Symposium
  • ASME 2018 Verification and Validation Symposium
  • Minneapolis, Minnesota, USA, May 16–18, 2018
  • Conference Sponsors: ASME Standards and Certification
  • ISBN: 978-0-7918-4079-5
  • Copyright © 2018 by ASME

abstract

The interest of this work is to describe a framework that allows the use of the well-known dynamic estimators in piezoelectric harvester (deterministic performance estimators) but taking into account the random error associated to the mathematical model and the uncertainties on the model parameters. The framework presented could be employed to perform Posterior Robust Stochastic Analysis, which is the case when the harvester can be tested or it is already installed and the experimental data is available. In particular, it is introduced a procedure to update the electromechanical properties of PEHs based on Bayesian updating techniques. The mean of the updated electromechanical properties are identified adopting a Maximum a Posteriori estimate while the probability density function associated is obtained by applying a Laplaces asymptotic approximation (updated properties could be expressed as a mean value together a band of confidence). The procedure is exemplified using the experimental characterization of 20 PEHs, all of them with same nominal characteristics. Results show the capability of the procedure to update not only the electromechanical properties of each PEH (mandatory information for the prediction of a particular PEH) but also the characteristics of the whole sample of harvesters (mandatory information for design purposes). The results reveal the importance to include the model parameter uncertainties in order to generate robust predictive tools in energy harvesting. In that sense, the present framework constitutes a powerful tool in the robust design and prediction of piezoelectric energy harvesters performance.

Copyright © 2018 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In