0

Full Content is available to subscribers

Subscribe/Learn More  >

Simulation Methodology for Occupant Safety Assessment of Indian Railway Passenger Coach

[+] Author Affiliations
Prajakta Prabhune, Anindya Deb

Indian Institute of Science, Bangalore, India

G. Balasubramani

Integral Coach Factory, Chennai, India

Paper No. JRC2018-6189, pp. V001T06A008; 9 pages
doi:10.1115/JRC2018-6189
From:
  • 2018 Joint Rail Conference
  • 2018 Joint Rail Conference
  • Pittsburgh, Pennsylvania, USA, April 18–20, 2018
  • Conference Sponsors: Rail Transportation Division
  • ISBN: 978-0-7918-5097-8
  • Copyright © 2018 by ASME

abstract

This work intends to lay the groundwork for Computer Aided Engineering (CAE)-based occupant safety of a typical tier-III Indian Railway (IR) passenger coach in a collision accident. Our previous work presented in International Crashworthiness Conference 2010 under the title “Simulation of Crash Behaviour of a Common Indian Railway Passenger Coach” provided crashworthiness assessment of a typical tier-III passenger coach structure for representative head-on collision scenarios namely, against an identical passenger coach and against a stationary locomotive. These scenarios were envisioned to be part of a bigger accident scenario e.g - head-on collision between two trains moving towards each other. Analysis of involved chain of events for entire rolling stock and resulting internal collisions between individual passenger cars was out of scope of this work and necessary inputs were obtained from available literature on the same. This work used a full scale Finite Element (FE) simulation model and commercial explicit solver LS-Dyna. FE model was validated using International Railway Union (UIC) code OR566 specified proof loads for design. Simulation methodology used for dynamic impact was validated by component level crushing experiments using a drop tower facility. Material modelling incorporated strain rate effect on yield strength which is essential for obtaining accurate structural deformations under dynamic impact loading. Contacts were modelled using the penalty method option provided by the solver. This model was simulated for collisions at 30, 40 and 56 km/h against a stationary rigid barrier. Collision speeds were chosen to simulate impact energies involved in collision scenarios as mentioned above. The structure was found to exhibit global bending deformation and jackknifing with pivot position at the door section. In this paper, we present an extension of this work — coupled occupant safety simulation and injury assessment. It was accomplished by recording head, neck, chest and knee responses of a Hybrid-III 50th percentile male Anthropomorphic Test Device (ATD) FE model, seated in passenger position on lower berth of the first cabin of a passenger car. Interiors were modelled to represent the actual structure. Dummy model was adapted to passenger cabin’s excessive mobility conditions and responses were revalidated against Federal Motor Vehicle Safety Standards (FMVSS) limits. Injury interpretation was based on Abbreviated Injury Scale (AIS), automotive injury criteria and injury risk curves for Head Injury Criterion (HIC), thoracic spine acceleration, neck bending moment in flexion and extension and knee force. This study provides with estimates of injury and fatality based on computer simulation of accident scenarios. However, attempts of correlating to any available injury and fatality statistics were out of scope of this study.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In