0

Full Content is available to subscribers

Subscribe/Learn More  >

Impact of Hysteresis Heating of Railroad Bearing Thermoplastic Elastomer Suspension Pad on Railroad Bearing Thermal Management

[+] Author Affiliations
Oscar O. Rodriguez, Arturo A. Fuentes, Constantine Tarawneh

University of Texas Rio Grande Valley, Edinburg, TX

Paper No. JRC2018-6209, pp. V001T02A010; 10 pages
doi:10.1115/JRC2018-6209
From:
  • 2018 Joint Rail Conference
  • 2018 Joint Rail Conference
  • Pittsburgh, Pennsylvania, USA, April 18–20, 2018
  • Conference Sponsors: Rail Transportation Division
  • ISBN: 978-0-7918-5097-8
  • Copyright © 2018 by ASME

abstract

It is a known fact that polymers and all other materials develop hysteresis heating due to the viscoelastic response or internal friction. The hysteresis or phase lag occurs when cyclic loading is applied leading to the dissipation of mechanical energy. The hysteresis heating is induced by the internal heat generation of the material, which occurs at the molecular level as it is being disturbed cyclically. Understanding the hysteresis heating of the railroad bearing elastomer suspension element during operation is essential to predict its dynamic response and structural integrity, as well as to predict the thermal behavior of the railroad bearing assembly. The main purpose of this ongoing study is to investigate the effect of the internal heat generation in the thermoplastic elastomer suspension element on the thermal behavior of the railroad bearing assembly. This paper presents an experimentally validated finite element thermal model that can be used to obtain temperature distribution maps of complete bearing assemblies in service conditions. The commercial software package ALGOR 20.3™ is used to conduct the thermal finite element analysis. Different internal heating scenarios are simulated with the purpose of determining the bearing suspension element and bearing assembly temperature distributions during normal and abnormal operation conditions. Preliminary results show that a combination of the ambient temperature, bearing temperature, and frequency of loading can produce elastomer pad temperature increases above ambient of up to 125°C when no thermal runway is present. The higher temperature increase occurs at higher loading frequencies such as 50 Hz, thus, allowing the internal heat generation to significantly impact the temperature distribution of the suspension pad. This paper provides several thermal maps depicting normal and abnormal operation conditions and discusses the overall thermal management of the railroad bearing assembly.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In